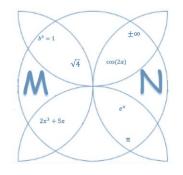
10.º ano Radicais. Potências.



RADICAIS. POTÊNCIAS DE EXPOENTE RACIONAL

1. Radicais

Chama-se <u>raiz índice n</u> de uma número real x a um número real y tal que $y^n = x$, sendo n um número natural.

A expressão $\sqrt[n]{x}$ denomina-se <u>radical</u>, sendo *n* o índice do radical e *x* o radicando.

Seja $a^n = b$; $n \in \mathbb{N}$ e $b \in \mathbb{R}$

- Se n é par e b > 0, $a^n = b \Leftrightarrow a = \pm \sqrt[n]{b}$ e a equação tem duas soluções.
- Se n é par e b < 0, a equação é impossível em \mathbb{R} .
- Se n é impar e $b \in \mathbb{R}$, $a^n = b \Leftrightarrow a = \sqrt[n]{b}$ e a equação tem uma solução.
- Se b=0, $a^n=0 \Leftrightarrow a=0$ e a equação é possível, sendo zero a única solução.

Operações com radicais:

Operação	Regras operatórias	
Multiplicação	$\sqrt[n]{a} \times \sqrt[n]{b} = \sqrt[n]{a \times b}, \forall a, b \in \mathbb{R}_0^+, \forall n \in \mathbb{N}$	
Divisão	$\sqrt[n]{a} \div \sqrt[n]{b} = \sqrt[n]{a \div b}, \forall a \in \mathbb{R}_0^+, \forall b \in \mathbb{R}^+, \forall n \in \mathbb{N}$	
Adição	$p\sqrt[n]{a} \pm q\sqrt[n]{b} = (p \pm q)\sqrt[n]{a}, \forall a \in \mathbb{R}_0^+, \forall n \in \mathbb{N}$	
Potenciação	$\left(\sqrt[n]{a}\right)^p = \sqrt[n]{a^p}, \forall a \in \mathbb{R}_0^+, \forall n, p \in \mathbb{N}$	
Radiciação	$\sqrt[n]{\sqrt[m]{a}} = \sqrt[nm]{a}, \forall a \in \mathbb{R}_0^+, \forall n, m \in \mathbb{N}$	

<u>Racionalização</u>: racionalizar o denominador é escrever uma expressão equivalente mas sem radicais no denominador.

$$\frac{a}{\sqrt[p]{p}} = \frac{a\sqrt[n]{b^{n-p}}}{\sqrt[n]{b^p} \times \sqrt[n]{b^{n-p}}}$$

$$\frac{a}{\sqrt{b} + \sqrt{c}} = \frac{a(\sqrt{b} - \sqrt{c})}{(\sqrt{b} + \sqrt{c})(\sqrt{b} - \sqrt{c})}$$

2. Potências de expoente racional

Dados dois números reais a e b e um número natural n:

- Se a < b e n é ímpar, então $a^n < b^n$
- Se $0 \le a < b$ e n é par, então $0 \le a^n < b^n$
- Se $a < b \le 0$ e n é par, então $a^n > b^n \ge 0$

Operações com potências

Multiplicação/quociente de potências com a mesma base	$n^a \times n^b = n^{a+b}$	$n^a \div n^b = n^{a-b}$
Multiplicação/quociente de potências com o mesmo expoente	$n^a \times m^a = (n \times m)^a$	$n^a \div m^a = (n \div m)^a$
Casos particulares	$(n^a)^b = n^{a \times b}$	$n^1 = n$ $n^0 = 1$

Potências de expoente $\frac{1}{n}$

Seja
$$a \ge 0, q \in \mathbb{Q}^+, n \in \mathbb{N} \setminus \{1\}$$
 tal que $q = \frac{1}{n}$, então $a^q = a^{\frac{1}{n}} = \sqrt[n]{a}$

Potências de expoente fracionário

Seja
$$a \ge 0$$
, $q \in \mathbb{Q}^+$, $n \in \mathbb{N} \setminus \{1\}$ tal que $q = \frac{m}{n}$, então $a^q = a^{\frac{m}{n}} = \sqrt[n]{a^m}$

Potências de expoente racional negativo

Seja
$$a > 0$$
 e $q \in \mathbb{Q}^+$, então $a^{-q} = \frac{1}{a^q}$