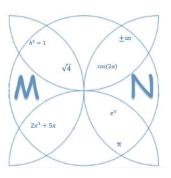

11.º ano Trigonometria


1. Generalidades

$$\sin\alpha = \frac{cateto\ oposto}{hipotenusa}$$

$$\cos \alpha = \frac{cateto \ adjacente}{hipotenusa}$$

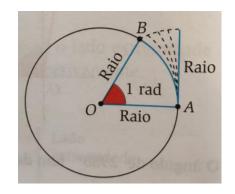
$$\tan\alpha = \frac{cateto\ oposto}{cateto\ adiacente}$$

Fórmula fundamental da Trigonometria

cateto oposto

$$(\sin \alpha)^2 + (\cos \alpha)^2 = 1$$

$$\tan \alpha = \frac{\sin \alpha}{\cos \alpha}$$

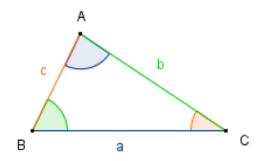

$$1 + \frac{1}{(\tan \alpha)^2} = \frac{1}{(\sin \alpha)^2}$$

$$1 + (\tan \alpha)^2 = \frac{1}{(\cos \alpha)^2}$$

	30°	45°	60°
$\sin \alpha$	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$
$\cos \alpha$	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$
$\tan \alpha$	$\frac{\sqrt{3}}{3}$	1	$\sqrt{3}$

	0°	90°	180°	270°
$\sin \alpha$	0	1	0	-1
$\cos \alpha$	1	0	-1	0
$\tan \alpha$	0	n.d.	0	n.d.

A quantos graus equivale um radiano?



$$1 \, radiano = \frac{360}{2\pi} graus$$

$$1 \, radiano = \frac{180}{\pi} graus$$

Graus	00	90º	180⁰	270º	360⁰
Radianos	0 rad	$\frac{\pi}{2}$ rad	π rad	$\frac{3\pi}{2}$ rad	2π rad

2. Lei dos Senos. Lei dos Cossenos.

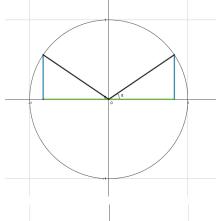
Lei dos Senos

$$\frac{\sin \hat{A}}{a} = \frac{\sin \hat{B}}{b} = \frac{\sin \hat{C}}{c}$$

Lei dos Cossenos

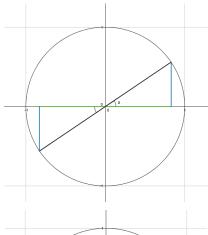
$$a^2 = b^2 + c^2 - 2 \times b \times c \times \cos \hat{A}$$

$$b^2 = a^2 + c^2 - 2 \times a \times c \times \cos \hat{B}$$


$$c^2 = a^2 + b^2 - 2 \times a \times b \times \cos \hat{C}$$

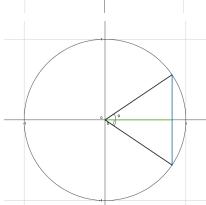
3. Ângulos generalizados

Círculo trigonométrico:


Relações entre as razões trigonométricas de α , $-\alpha$, π - α e π + α

$$\sin(180^{\circ} - \alpha) = \sin \alpha$$

$$\cos(180^{\circ} - \alpha) = -\cos \alpha$$


$$\tan(180^{\circ} - \alpha) = -\tan \alpha$$

$$\sin(180^{\circ} + \alpha) = -\sin\alpha$$

$$\cos(180^{\circ} + \alpha) = -\cos\alpha$$

$$\tan(180^\circ + \alpha) = \tan \alpha$$

$$\sin(-\alpha) = -\sin\alpha$$

$$\cos(-\alpha) = \cos \alpha$$

$$\tan(-\alpha) = -\tan\alpha$$

$$\sin(90^{\circ} - \alpha) = \cos \alpha$$

$$\sin(90^\circ + \alpha) = \cos \alpha$$

$$\cos(90^{\circ} - \alpha) = \sin \alpha$$

$$\cos(90^{\circ} + \alpha) = -\sin\alpha$$

$$\tan(90^{\circ} - \alpha) = \frac{1}{\tan \alpha}$$

$$\tan(90^\circ + \alpha) = -\frac{1}{\tan \alpha}$$

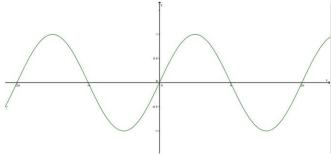
$$\sin(270^{\circ} - \alpha) = -\cos \alpha$$

$$\sin(270^{\circ} + \alpha) = -\cos\alpha$$

$$\cos(270^{\circ} - \alpha) = -\sin \alpha$$

$$\cos(270^{\circ} + \alpha) = \sin \alpha$$

$$\tan(270^{\circ} - \alpha) = \frac{1}{\tan \alpha}$$


$$\tan(270^\circ + \alpha) = -\frac{1}{\tan \alpha}$$

11.º ano

Trigonometria

4. Funções trigonométricas

Função seno

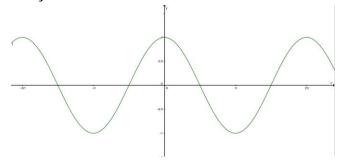
$$D = \mathbb{R}$$

$$D' = [-1, 1]$$

Período: 2π

Função ímpar

- $\rightarrow \sin(-x) = -\sin(x)$
- → Simetria em relação à origem


 $\underline{\text{Zeros}} : x = k\pi, k \in \mathbb{Z}$

Extremos

 \rightarrow Máximo: 1; Maximizantes: $x = \frac{\pi}{2} + 2k\pi, k \in \mathbb{Z}$

 \rightarrow Mínimo: -1; Minimizantes: $x = \frac{2\pi}{2} + 2k\pi, k \in \mathbb{Z}$

Função cosseno

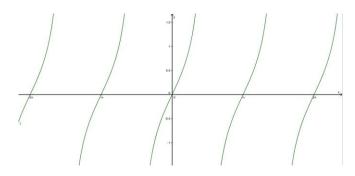
 $D = \mathbb{R}$

$$D' = [-1, 1]$$

Período: 2π

Função par

- $\rightarrow \cos(x) = -\cos(x)$
- → Simetria em relação ao eixo das ordenadas


 $\underline{\mathrm{Zeros}} \colon x = k\pi, k \in \mathbb{Z}$

Extremos

 \rightarrow Máximo: 1; Maximizantes: $x = 2k\pi, k \in \mathbb{Z}$

 \rightarrow Mínimo: -1; Minimizantes: $x = \pi + 2k\pi, k \in \mathbb{Z}$

Função tangente

Zeros: $x = k\pi, k \in \mathbb{Z}$

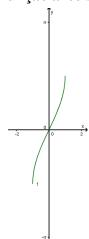
$$D = \mathbb{R} \setminus \left\{ \frac{\pi}{2} + k\pi, k \in \mathbb{Z} \right\}$$

$$D' = \mathbb{R}$$

<u>Período</u>: π

Função ímpar

$$\rightarrow \tan(-x) = -\tan(x)$$

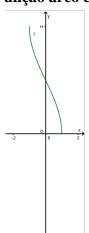

→ Simetria em relação à origem

11.º ano

Trigonometria

5. Funções trigonométricas inversas

Função arco seno

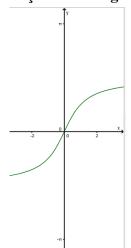


$$y = \arcsin(x) \iff x = \sin(y), \text{ para } -\frac{\pi}{2} \le y \le \frac{\pi}{2}$$

$$D = [-1, 1]$$

$$D' = \left[-\frac{\pi}{2}; \frac{\pi}{2} \right]$$

Função arco cosseno



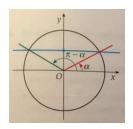
$$y = \arccos(x) \Leftrightarrow x = \cos(y)$$
, para $0 \le y \le \pi$

Note-se que
$$\arccos(x) = \frac{\pi}{2} - \arcsin(x)$$

$$D = [-1, 1]$$
$$D' = [0; \pi]$$

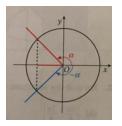
Função arco tangente

$$y = \arctan(x) \Leftrightarrow x = \tan(y), \text{ para } -\frac{\pi}{2} \le y \le \frac{\pi}{2}$$


$$D = \mathbb{R}$$

$$D' = \left[-\frac{\pi}{2}; \frac{\pi}{2} \right]$$

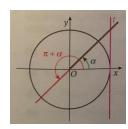
6. Equações trigonométricas


Equações do tipo $\sin x = a$

$$\sin x = \sin a$$

$$\Leftrightarrow x = a + 2k\pi \lor x = \pi - a + 2k\pi, k \in \mathbb{Z}$$

Equações do tipo $\cos x = a$


$$\cos x = \cos a$$

$$\iff x = a + 2k\pi \lor x = -a + 2k\pi, k \in \mathbb{Z}$$

Equações do tipo tan x = a

$$\tan x = \tan a$$

$$\iff x = a + k\pi, k \in \mathbb{Z}$$

